Exercises on the Polynomial Hierarchy PH CSCI 6114 Fall 2023

Joshua A. Grochow

September 12, 2023

Definition 1. The *complement* of a language $L \subseteq \Sigma^*$ is $\overline{L} := \{x \in \Sigma^* : x \notin L\}$. If C is a collection of languages, then $\mathbf{co}C = \{\overline{L} : L \in C\}$.

- 1. (a) Show that for any complexity class $\mathcal{C}, \mathcal{C} \subseteq \mathsf{co}\mathcal{C}$ iff $\mathcal{C} = \mathsf{co}\mathcal{C}$.
 - (b) Show that P = coP. (We say that P "is closed under complement.")
 - (c) Show that for any \mathcal{C} , $\mathsf{co}\mathcal{C} \cup \mathcal{C}$ and $\mathsf{co}\mathcal{C} \cap \mathcal{C}$ are closed under complement.
- 2. Is NP = coNP? This is a hard problem. Try to convince each other one way or the other.
- 3. (a) Show that, for any oracle X, P^X is closed under complement, that is, $\mathsf{P}^X = \mathsf{coP}^X$. In particular, $\mathsf{P}^{\mathsf{NP}} = \mathsf{coP}^{\mathsf{NP}}$.
 - (b) Show that $\mathsf{P}^{\mathsf{NP}} = \mathsf{P}^{\mathsf{co}\mathsf{NP}}$.
 - (c) Show that if $NP = P^{NP}$, then NP = coNP.

Definition 2. We use \exists^p, \forall^p to denote the polynomially-bounded version of these quantifiers.

For example, we can (re)define NP as the class of languages L such that there is a polynomial-time verifier V, and for all x,

$$\begin{aligned} x \in L \iff (\exists^p y)[V(x,y) = 1] \\ \iff (\exists y)[|y| \le \operatorname{poly}(|x|) \text{ and } V(x,y) = 1] \end{aligned}$$

Definition 3. 1. A language L is in $\Sigma_k \mathsf{P}$ $(k \ge 0)$ if there is a polynomialtime verifier V such that, for all x,

$$x \in L \iff (\exists^p y_1)(\forall^p y_2) \cdots (\exists^p / \forall^p y_k) V(x, y_1, y_2, \dots, y_k) = 1.$$

where the final quantifier is \exists^p if k is odd and \forall^p if k is even.

- 2. We similarly define $\Pi_{\mathsf{k}}\mathsf{P}$ except where the right-hand side starts with $\forall^p y_1$ (and then alternate).
- 3. Finally, we define $\mathsf{PH} = \bigcup_{k \ge 0} \Sigma_k \mathsf{P}$.

Exercises on the Polynomial Hierarchy

- 4. Show that $P = \Sigma_0 P = \Pi_0 P$, $NP = \Sigma_1 P$, and $coNP = \Pi_1 P$.
- 5. (a) Show that $\mathsf{PH} \subseteq \mathsf{EXP}$, where EXP is the class of decision problems that can be decided by a Turing machine that runs in time $2^{\operatorname{poly}(n)}$.
 - (b) Show that $PH \subseteq PSPACE$, where PSPACE is the class of decision problems that can be decided by a Turing machine that uses an amount of *space* that is poly(n) (with no *a priori* upper bound on its runtime).
- 6. Show that $\Sigma_k \mathsf{P} = \mathsf{co} \Pi_k \mathsf{P}$. That is, $L \in \Sigma_k \mathsf{P}$ iff $\overline{L} \in \Pi_k \mathsf{P}$ (\overline{L} is our notation for the complement language, $\overline{L} := \Sigma^* \setminus L = \{x \in \Sigma^* | x \notin L\}$). If this feels too abstract, start with k = 1.
- 7. Show that $\Sigma_k P \subseteq \Sigma_{k+1} P \cap \Pi_{k+1} P$. Conclude that (a) $\Sigma_k P \cup \Pi_k P \subseteq \Sigma_{k+1} P \cap \Pi_{k+1} P$, (b) $PH = \bigcup_{k>0} \Pi_k P$.

Resources

- Defined in Stockmeyer, Theoret. Comp. Sci., 1976
- Arora & Barak Ch. 5
- Du & Ko Ch. 3
- Schöning & Pruim, Gems of TCS, Ch. 16
- Hemaspaandra & Ogihara, Complexity Theory Companion, Appendix A.4.1
- Homer & Selman §7.4 do PH in terms of oracles; we'll see that characterization later, so I'm including it here for future reference, but we haven't gotten to it yet.